2017 journal article

Analysis of a Novel Technique for Temperature Rise Abatement in Liquid Piston Compressors-External Gas Injection

JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 9(2).

By: H. Bhaskaran n, P. Ro n, J. Park n & K. Ramakrishnan n

co-author countries: United States of America 🇺🇸
Source: Web Of Science
Added: August 6, 2018

This paper analyses a novel heat transfer enhancement technique that can be used in compressors to limit the temperature rise during compression. This technique is based on the injection of external high-pressure gas into the chamber during the compression process. The impact of different factors on the effectiveness of this technique has been studied using experimental and computational methods. In the first set of trials, the location and angle of injection of the external air was varied. It was observed that the heat transfer coefficient governing the heat transfer rate from the chamber varied greatly with change in location and angle of injection. In the second set of experiments, the source pressure of the injected gas was varied from 100.66 kPa to 551.58 kPa. It was observed that the temperature rise of air in the chamber was reduced with an increase in source pressure. Additionally, the increase in chamber pressure was steeper in the higher source pressure cases. In the third set of experiments, the injection profile of the injected gas was varied. This parameter did not greatly impact the effectiveness of external gas injection. In the last set of experiments, the time of initiation of injection was varied. Earlier injection had a positive impact on reducing the temperature rise in the chamber. However, the pressure in the chamber was seen to increase more rapidly in the runs with early injection. Considering that these factors could have a positive/negative impact on the temperature and pressure in the chamber (work required for compression), it may be required to optimize the injection of external high-pressure gas depending on the application.