2017 journal article

Siderophore and Organic Acid Promoted Dissolution and Transformation of Cr(III)-Fe(III)-(oxy)hydroxides

ENVIRONMENTAL SCIENCE & TECHNOLOGY, 51(6), 3223–3232.

co-author countries: United States of America 🇺🇸
MeSH headings : Chromium; Ferric Compounds; Hydroxides; Iron; Oxidation-Reduction; Siderophores; Solubility
Source: Web Of Science
Added: August 6, 2018

The role of microbial activities on the transformation of chromium (Cr) remediation products has generally been overlooked. This study investigated the stability of Cr(III)-Fe(III)-(oxy)hydroxides, common Cr(VI) remediation products, with a range of compositions in the presence of common microbial exudates, siderophores and small organic acids. In the presence of a representative siderophore, desferrioxamine B (DFOB), iron (Fe) was released at higher rates and to greater extents relative to Cr from all solid phases. The presence of oxalate alone caused the release of Cr, but not of Fe, from all solid phases. In the presence of both DFOB and oxalate, oxalate acted synergistically with DFOB to increase the Fe, but not the Cr, release rate. Upon reaction with DFOB or DFOB + oxalate, the remaining solids became enriched in Cr relative to Fe. Such incongruent dissolution led to solid phases with different compositions and increased solubility relative to the initial solid phases. Thus, the presence of microbial exudates can promote the release of Cr(III) from remediation products via both ligand complexation and increased solid solubility. Understanding the potential reaction kinetics and pathways of Cr(VI) remediation products in the presence of microbial activities is necessary to assess their long-term stability.