Metadata for Data: Data Management Plan

 

 


 

What is metadata?

Metadata is structured information describing a resource, for example, the dates, title, and creators associated with a dataset.  Metadata needs vary across scientific fields, but would ideally cover general descriptive information, access and use policies, data characteristics, and archive terms. A metadata record consists of a set of predefined elements that describe specific attributes of a resource.  Here's an example of a record for a dataset. For datasets, metadata can also refer to codebooks.  See this sample codebook, and check out the Codebook Cookbook for more information.


Why document data?

Metadata is a type of documentation.  Documenting data

  • Allows you to easily find and reuse your own data
  • Enables you to discover, evaluate, and reuse the data of others
  • Helps others discover, reproduce, reuse, and cite your data
  • Ensures the preservation of digital files as technology evolves over time

Establishing a metadata strategy that sufficiently describes your data and meets your data management needs is an important part of a data management plan. Planning what metadata is needed and how this data will be structured should occur at the beginning of a research project. Doing so will make automation of metadata creation easier and reduce the need for time-consuming metadata capture or clean up later.


Metadata standards

There are a number of metadata standards for datasets.  While it is not necessary to have an in-depth understanding of metadata standards, it is important to create metadata that will be interoperable with recognized standards. Some scientific communities have their own widely used standards (e.g., Astronomy Visualization Metadata StandardDarwin CoreEcological Metadata Language).  The Digital Curation Centre provides a disciplinary metadata guide that lists metadata standards by discipline.  Some general dataset standards that are discipline agnostic include DataCite, Project Open Data, and DDI.


Discovery

Access to and discovery of data may be facilitated through links in metadata records that are displayed in the discovery layers of repositories or online catalogs. A variety of data repositories exist at NCSU and through other institutions and organizations. For guidance in making your data discoverable, contact the NCSU Libraries.


Best practices

The NCSU Libraries suggests the following set of standard metadata elements that should be captured to describe the content of your data resources as well as the nature of the files.

  Field Description
General information Title Name of the collection of datasets or of the project that produced them
Creator Names and institutions of the people who created the data
Dates Key dates associated with the data, such as the date span covered by the data or date of creation
Funding agencies/period Organizations or agencies who funded the research and the periods of funding
Keywords Keywords or phrases describing the subject or content of the data
Identifier Unique number or alphanumeric string used to identify the data
Coverage (if applicable) Geographic coverage of the dataset
Access information Access restrictions Where and how your data can be accessed by other researchers
Copyright  
Technical details File formats Stata, Excel, tab delimited text, TIFF images, WAV audio, etc.
List of files  
Count of files  

At a minimum, metadata records should be kept in a fielded form, such as a spreadsheet, CSV file, or tab-delimited file. Auxiliary information necessary to interpret the metadata - such as explanations of codes, abbreviations, or algorithms used - should be included as accompanying documentation.


Who can you contact if you need help or have questions?

Please contact us at library_datamanagement@ncsu.edu for assistance identifying the metadata necessary for the project to aid in both data management and search and discovery.